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Stability and Convergence of Difference Approximations 
to Pseudo-Parabolic Partial Differential Equations 

By William H. Ford* and T. W. Ting** 

Abstract. Two difference approximations to the solution of a pseudo-parabolic problem 
are constructed and shown by means of stability analysis to converge in the "discrete" L2 
norm. A relation between parabolic and pseudo-parabolic difference schemes is discussed, 
and the stability of difference approximations to backward time parabolic and pseudo-par- 
abolic problems is also considered. 

1. Introduction. We shall let T = {(t, x): 0 _ t _ T, 0 _ x < 1 } and consider 
difference approximations to the strict solution u(t, x) of the linear problem, 

(a(t, x)ut.). + (b(t, x)u.). - q(t, x)u = r(t, x)ut in R, 

(1.1) u(O, x) = uO(x), 0 < x < 1, 

u(t, 0) = f(t), U(t, 1) = g(t), 0 ? t ? T. 

Actually, with slight modifications our methods are also applicable to semilinear 
equations. Throughout this paper, we assume that (i) the given functions a, b, r, and q 
belong to the class C3(A); (ii) there are positive constants A*, R* such that a(t, x) > 

A*, r(t, x) > R* in A; (iii) problem (1.1) has a unique solution u in C5(A). In passing, 
we note that in R, jb(t, x)l _ B*, jq(t, x)l _ Q*, where B*, Q* are constants. 

We formulate two difference approximations to the solution of (1.1), apply a 
stability analysis method developed by Douglas [4, pp. 41-44] to establish the con- 
vergence of each approximation in the "discrete" L2 norm, and prove that for a fixed 
lattice, the solution to each of two difference approximations to a certain parabolic 
problem can be obtained as the limit of a sequence of difference approximations to a 
pseudo-parabolic problem. Lastly, a comparison of the stability properties of dif- 
ference schemes is made for backward time linear parabolic and pseudo-parabolic 
problems. 

Various physical applications of pseudo-parabolic equations are discussed in [13], 
[12], [7]. The most significant application of all is to the two-temperature theory of 
heat conduction proposed by Chen and Gurtin [1]. 

2. Stability of the Difference Schemes. Let k = T/M, h = 1/N, and take 
tn = nk, 0 < n < M, xat = ah, 0 < a < N, so that the points {(tn, x,)} form a lattice 
covering R. The difference notation used is standard, and the reader may consult 
[4, pp. 2-4]. 
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Choose j to be either 0 or 2 and define the linear operators An+ , rn+ on RN-1 

such that, for 1 < a < N - 1, 

(An+ijO)a = rn+iaa? - Ax(an+iAxO)a, 40o = O)N = 0, 

(rn+ij)a = qn+ia)oa - Ax(bn+jAxO)a, 40o = ON = 0, 

for all vectors 4 = (O), * *, 4N-1), where r, a, b, q are functions appearing in (1.1). 
Let An+i Bn+i be, respectively, the matrices of An+i and rn+i relative to the standard 
ordered basis for RNl-. We shall consider the following two difference schemes, which 
we call the standard and Crank-Nicolson, respectively, for the approximation of the 
solution to (1.1): 

(2.1) klAnWn+l = (kiAn - Bn)wn + Cn, w0 = U0, 

(2.2) (kilAn+1/2 + 12Bn+12)wn+l = (k An+1/2 - -Bn+1/2)wn + dn, w0 = U0 

where, for 0 ? n < M - 1 

Jh 2klan/,12(f(tn) - f(tn+l)) - h2 bn,1/2f(tn), a = 1, 

Cnao = 1O, 2 < ? < N 2, 

IF 2k-1anN-1/2(g(tn) 
- g(tn+l)) - h2 bnN-1/2g(tn), a = N- 1, 

Jh 2k1an+1/2,1/2(f(tn) - f(tn+l)) - h 2bn+1/2,1/2(f(tn+l) + f(tA)), a = 1, 

dna =0w 2 ? a ? N- 2, 

1h 2k 1an+/2 ,N-1/2(g(tn) - g(tn+l)) - h bn+1/2 ,N-1/2(g(tn+l) + g(tn)), 

a = N- 1, 

f and g are the boundary values in (1.1), and u0 is the vector containing the initial 
condition. 

The tridiagonal matrices involved in the schemes are such that (2.1) has a unique 
solution for all k, and (2.2) has a unique solution for all sufficiently small k. 

Our stability and convergence analysis will be done for the inner product (4, ,6) = 
h 4N-) a 4a and induced norm 1II11 = [h EN-1 (4a)2]1/2, which we call the L2 norm. 
It is seen from their definition that the matrices An+j i Bn+ i are symmetric for j = 0 or 2 

and for all n, and simple calculation shows that 
N 

(2.3) (An+4 ,4) = h E {an+ia1/2[(oa - )a-i)/h]2 + rn+ ,a(0a)2}, 
a =1 

where 40 = ON = 0. A similar relation holds for Bn+;. Now, (2.3) and assumption (ii) 
ensure that the matrices An+ i are positive definite, and so we may define the sequence of 
inner products (4), Vf)n+ = (An+;) Vti) and induced norms 11)Ijn+i = (An+i?4, 4))1/2 on 
RN-1 We may now define stability for the schemes (2.1), (2.2). 

Definition 2.1. The difference scheme (2.1) [(2.2)] is said to be stable if there exists a 
positive constant s, depending on the structure of problem (1.1) and independent of the 
time level n and time increment k, such that whenever o)n and ??n+, are any two vectors 
in RN- satisfying the homogeneous system corresponding to (2.1) [(2.2)] at time level 
n, then I InA-4+i+j ? (1 + sk) j)njjln+i with j = 0 [with j = 2], for all n. 
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To prove the stability of the schemes, we follow Douglas' approach in [3] and 
reduce the problem to the estimation of bounds on the eigenvalues of a generalized 
eigenvalue problem of the form 

(2.4) B =+ j= An+ jo. 

Note that there exists a complete set of eigenvectors for (2.4), with corresponding real 
eigenvalues, orthonormal with respect to the inner product (., )n+i [2, pp. 37-41], 
and if we apply the minimax principle [7, p. 181], it is easily seen by using (2.3) and the 
similar relation for B?+i that the least eigenvalue of (2.4) is bounded below by the 
least eigenvalue for the eigenvalue problem 

(2.5) -(Qu*4 - B* A204) = V(R*4oa - A*A2 
40), 

1 < a < N - 1, 

where 40 = PN = 0. The eigenvalues of (2.5) can be calculated exactly [4, p. 4], and a 
simple assumption on Q* yields a lower bound for the least eigenvalue of (2.4). A 
similar argument provides a bound for the largest eigenvalue. In fact, there follows 

LEMMA 2.2. Let ju") and ju"N-1) be, respectively, the least and greatest eigenvalues of 
(2.4). Let Q* be increased, if necessary, so that B*R* -A*Q* ? 0. Then ju") > 
-Q*/R and uN-i) < Q*/R 

Throughout the remainder of this paper, when Q* is needed, it will be assumed 
that Q* is chosen to satisfy this requirement. 

We are now in a position to prove that each of the two schemes is stable. 
THEOREM 2.3. For all time increments k, the standard scheme (2.1) is stable. 
Proof. If we apply Lemma 2.2 to the eigenvalue problem (k- An - Bn)O = Xk- An4, 

it follows that max Xan) I 1 + kQ*/R*. There exists a complete orthonormal set of 
eigenvectors 4n1), 'on, f1) for this problem, and so if pn = Fa a1Cna Ojn~) 4 )n+1 

aN-1 Dna44 ' are any two vectors such that k- 1An4n+1 = (k- 'An-Bn)4, it follows 
that Dn a = X('a) Cn a 1 _ a < N- 1. The orthonormality of the on4a) then implies 
that |110n+11 ?n (1 + kQ*/R*) 14nljInj 

THEOREM 2.4. If E is fixed, 0 < e < 1, and the time increment k is chosen so small 
that kQ*/(2R*) < 1 - E, then the Crank-Nicolson scheme (2.2) is stable. 

Proof. If we apply Lemma 2.2 to the eigenvalue problem (k 'An+ 12 - 2Bn+ 1/2)0 - 

A(k-1An+112 + 2BM+12)09 it follows that (1 - X(a))/(1 + X(a)) > -kQ*/(2R*), and 
the assumption on k implies that -1 < Xa) < 1 + kQ*/(ER*). The rest of the proof 
proceeds as in Theorem 2.3. 

3. Convergence of the Difference Approximations. In this section, the stability 
of the difference schemes will be used to demonstrate L2 convergence of the approx- 
imations as the lattice size diminishes. 

THEOREM 3.1. Under assumptions (i)-(iii) as stated in the Introduction, the solution 
of the standard difference approximation (2.1) to problem (1.1) converges in the 
"discrete" L2 norm as the lattice size diminishes to zero. Moreover, the rate of con- 
vergence is O(h2 + k). 

Proof. It is an immediate consequence of assumption (i) that there exists a con- 
stant t, independent of n and k such that, for all 4, 

(3.1) ||? I|n+$ < (1 + tk) lI? IIn for all n. 

From (2.3) and assumption (ii) it follows that, for all 4, 
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(3.2) 11411 < l1i4I/(R*) 12 for all n. 

If we let z = u - w, where w is the solution of (2.1), it is readily seen by Taylor's 
theorem that the error z satisfies the difference system k- 'Anzn1 = (k- 'A - B.)z. + 

en, zo = 0, where en a = O(h2 + k), 1 < a _ N - 1. A direct calculation shows that 

k-21 (k- A,)-len112 < jIIA-111 IlenII2, and since IIA-111 ? RJ1 and Ijenjj = O(h2 + k) 
for all n, it follows that 

(3.3) k1 II(kA )An'len I = O(h2 + k) as h, k -O 0. 

The stability of scheme (2.1) coupled with (3.1)-(3.3) are shown in [4, pp. 41-44] to 
imply convergence in L2. 

We shall now consider the Crank-Nicolson approximation (2.2). Before proving 
convergence, a preliminary lemma will be stated without proof. Recall that the spectral 
radius P(C) of an m X m matrix C is given by P(C) = maxI X I, where XWt 1 < i < m, 
are the eigenvalues of C. 

LEMMA 3.2. Let A be a real m X m symmetric positive definite matrix. Let I A = 

(A09, 4)1/29 4 CJ Rm. Then, for every m X m matrix B, 

IIBI|A = (r(A-lB*AB))l/2, 

where B* is the adjoint of B. 
THEOREM 3.3. Under the stated restrictions on u, a, b, q, and r indicated in (i)-(iii), 

the solution of the Crank-Nicolson approximation (2.2) to problem (1.1) converges in 
the "discrete" L2 norm as the mesh size decreases to zero. Moreover, the rate of con- 
vergence is 0(h2 + k2). 

Proof. Relations (3.1) and (3.2) follow for the norm 1I ' I n+i/2, and the scheme (2.2) 
is stable for sufficiently small k. The error equation is (k- An+1/2 + 2Bn+1/2)Zn+l = 

(k ~n- +B +1/2)Zn + en z0 = 0, where ena = 0(h2 + k2), 1 < a ? N - 1, 

and so by [4, pp. 41-44] all we need do to prove convergence is to show that 
k-1 I CQ2+ 12 enjIn+1/2 = 0(h2 + k2), where Cn+112 = k-An+112 + 'Bn+1/2. A straightfor- 
ward computation using the symmetry of Cn+1/2 and An+1/2 shows that 

(3.4) 1 1 Cn+ 1/2enl I n+ 1/2 = | |Cn+1/2 An+1/2Cn+1/211 |lien| 

IliCn+1/2 An+1/2| In+1/2 1liCn+1l/2l In+1/2 1n| I12 

Consider the eigenvalue problem An+?12cp = XCn+?12cp. By using Lemma 2.2 and the 
restriction on k given in Theorem 2.4, it follows that 0 < X < k/E and subsequently 
that jC-+12An+112jjn+112 = 0(k) as k -O 0. By Lemma 3.2 and the symmetry of Cn+1/2, 

I Cn+1/2 1 In+ 1/2 <- iI cn+1/2 An+1/2 11n+1/2 1 n+]/2 1 n+1/2 1liCn+1/2 1 n+1/2 

and so 

iICn+12I1In+1/2 $_ iCn+I12An+12I1In+1/2 IIAn+12I1In+1/2. 

Since IAn-12jjn?112 < (RX)'1 by Lemma 3.2, there results ICn-+1/21In+1/2 = 0(k). If we 
note that I enj I 

= 0(h2 + k2) and use (3.4), the theorem follows. 
We now briefly discuss difference approximations to the semilinear problem 

(a(t, x)ut.). + (b(t, x)u.). - q(t, x, u) = r(t, X)Ut in A, 

with the same initial-boundary values as in (1.1). We assume that u, a, b, r have the 



PSEUDO-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 741 

properties listed in (i)-(iii). The function q is assumed to have a bounded derivative in u 
for all (t, x) E , -o < Ku < c. The corresponding standard scheme takes on the 
same form as in (2.1) except the terms involving qnatwnat are replaced by q(tn, xa, Wna). 

Similarly, the Crank-Nicolson scheme has the same form as (2.2) except that the terms 
involving q are replaced by - q(tn+,,2, Xa, (wn ?1 a + wn a)/2). The standard difference 
system is still linear, while that of the Crank-Nicolson scheme is nonlinear and must be 
solved by an iterative process. The error equation for each scheme is readily seen to be 
of precisely the same form as those in the last section, and those techniques prove that 
the standard scheme converges with rate O(h2 + k) and the Crank-Nicolson with rate 
O(h2 + k2). 

4. Parabolic and Pseudo-Parabolic Difference Schemes. In this section, we 
shall discuss a relation between parabolic and pseudo-parabolic equations. Consider 
the linear parabolic problem 

(4.1) (b(t, x)u.). - q(t, x)u = r(t, x)u, in A, 

with the same initial-boundary conditions as in (1.1), and its explicit difference 
approximation 

(4.2) Az(bnAzPn)a - qnaPna = rn-(Pn+l a pna)/k, 1 < a < N- 1, 

POa = Uo(Xa), Pn+1,o = f(tn+l), Pn+l,N = g(tn+l) 

Let E be a positive parameter. We shall relate the difference approximation (4.2) to the 
standard scheme for the pseudo-parabolic problem 

(4.3) E(a(t, x)u'.). 
+ (b(t, 

x)u4). 
- q(t, x)uE = r(t, x)u' in A, 

with the same initial-boundary conditions as in (1.1). Assumptions (i)-(ii) are to hold 
for a, b, r, q, but in addition it is assumed that 0 < B* < b(t, x) _ B* in R. It is 
known [14] that under suitable regularity conditions, the solution ue of (4.3) converges, 
for every value of t, to the solution u of (4.1) in L2[0, 1] as E -O 0. We have a cor- 
responding result here for difference schemes. The proof proceeds by subtracting the 
standard scheme for (4.3) with solution we from (4.2) and observing that (p - wE) 
satisfies a nonhomogeneous parabolic difference scheme, with zero boundary and 
initial values, whose nonhomogeneous term depends on we and E. If it is shown that 
maxjwnal is bounded independent of e, then the results of [3] provide the result. To 
show this, an eigenvalue analysis is performed on the difference equation satisfied by 
We, and the result follows by iteration along the lines of [4, pp. 41-44]. Details are 
available from either of the authors. 

THEOREM 4.1. Let the mesh ratio X = k/h2 be such that X < R*/(2B*). Let p be the 
solution to (4.2) and We the solution of the standard approximation to (4.3). Then, for 
0 < n < M, IIpn - WnlI = O(E)as E->O. 

The same type of result can be proved for the Crank-Nicolson approximation. Of 
course, in this case we have to use the Crank-Nicolson difference approximations for 
both (4.1) and (4.3). In fact, we have 

THEOREM 4.2. Let p and we be, respectively, the Crank-Nicolson approximations to 
(4.1) and (4.3). Then, for all ? _ n ? Mg Imn - wnII O(E) as E - 0. 
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It is well known that the explicit difference formulation for the parabolic problem 
(4.1) cannot be expected to be stable for X > R*/(2B*), so the restricted mesh ratio is 
not surprising. On the other hand, the Crank-Nicolson approximation to (4.1) is 
unconditionally stable, so no restriction on the mesh ratio is expected in this case. 

5. Stability for the Backward Time Problem. To conclude our discussion, we 
briefly mention the backward time problem in the parabolic and pseudo-parabolic 
case. It is well known that for parabolic differential equations there is, in general, no 
solution. For pseudo-parabolic equations, on the other hand, with sufficient regularity 
conditions on the coefficients and the initial and boundary data, a unique solution 
exists for - o < t < o [12]. An analogous situation exists in the discrete case. The 
standard approximation to (1.1) written out for negative time remains stable. In fact, 
the eigenvalue problem considered for the determination of stability is Bno = 
(X - 1)k- 'An4, the only difference being that here (X - I)k-' multiplies And whereas 
in the nonnegative time problem (1 - X)k-' multiplies An+. Exactly as before, we 
have maxa,, j X, I< 1 + Q*k/R*. The eigenvalue problem for the determination of 
stability for the backward time explicit difference scheme for the corresponding 
parabolic problem (4.1) is Bn/p = (X - I)k-'Rn/d, where Rna = r I, 1 < a < N - 1. 
The best we can say in this case is that X < 1 + kQ*/R* + (4B*/R*)(k/h2), so we 
cannot expect stability. 

The Crank-Nicolson approximation to (1.1) in the backward time case is still 
stable for sufficiently small k, while we cannot expect stability for the corresponding 
parabolic problem. 
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